In probability theory , Kolmogorov's inequality is a so-called "maximal inequality " that gives a bound on the probability that the partial sums of a finite collection of independent random variables exceed some specified bound.
Statement of the inequality [ edit ]
Let X 1 , ..., X n : Ω → R be independent random variables defined on a common probability space (Ω, F , Pr), with expected value E[X k ] = 0 and variance Var[X k ] < +∞ for k = 1, ..., n . Then, for each λ > 0,
Pr
(
max
1
≤
k
≤
n
|
S
k
|
≥
λ
)
≤
1
λ
2
Var
[
S
n
]
≡
1
λ
2
∑
k
=
1
n
Var
[
X
k
]
=
1
λ
2
∑
k
=
1
n
E
[
X
k
2
]
,
{\displaystyle \Pr \left(\max _{1\leq k\leq n}|S_{k}|\geq \lambda \right)\leq {\frac {1}{\lambda ^{2}}}\operatorname {Var} [S_{n}]\equiv {\frac {1}{\lambda ^{2}}}\sum _{k=1}^{n}\operatorname {Var} [X_{k}]={\frac {1}{\lambda ^{2}}}\sum _{k=1}^{n}{\text{E}}[X_{k}^{2}],}
where S k = X 1 + ... + X k .
The convenience of this result is that we can bound the worst case deviation of a random walk at any point of time using its value at the end of time interval.
The following argument employs discrete martingales .
As argued in the discussion of Doob's martingale inequality , the sequence
S
1
,
S
2
,
…
,
S
n
{\displaystyle S_{1},S_{2},\dots ,S_{n}}
is a martingale.
Define
(
Z
i
)
i
=
0
n
{\displaystyle (Z_{i})_{i=0}^{n}}
as follows. Let
Z
0
=
0
{\displaystyle Z_{0}=0}
, and
Z
i
+
1
=
{
S
i
+
1
if
max
1
≤
j
≤
i
|
S
j
|
<
λ
Z
i
otherwise
{\displaystyle Z_{i+1}=\left\{{\begin{array}{ll}S_{i+1}&{\text{ if }}\displaystyle \max _{1\leq j\leq i}|S_{j}|<\lambda \\Z_{i}&{\text{ otherwise}}\end{array}}\right.}
for all
i
{\displaystyle i}
.
Then
(
Z
i
)
i
=
0
n
{\displaystyle (Z_{i})_{i=0}^{n}}
is also a martingale.
For any martingale
M
i
{\displaystyle M_{i}}
with
M
0
=
0
{\displaystyle M_{0}=0}
, we have that
∑
i
=
1
n
E
[
(
M
i
−
M
i
−
1
)
2
]
=
∑
i
=
1
n
E
[
M
i
2
−
2
M
i
M
i
−
1
+
M
i
−
1
2
]
=
∑
i
=
1
n
E
[
M
i
2
−
2
(
M
i
−
1
+
M
i
−
M
i
−
1
)
M
i
−
1
+
M
i
−
1
2
]
=
∑
i
=
1
n
E
[
M
i
2
−
M
i
−
1
2
]
−
2
E
[
M
i
−
1
(
M
i
−
M
i
−
1
)
]
=
E
[
M
n
2
]
−
E
[
M
0
2
]
=
E
[
M
n
2
]
.
{\displaystyle {\begin{aligned}\sum _{i=1}^{n}{\text{E}}[(M_{i}-M_{i-1})^{2}]&=\sum _{i=1}^{n}{\text{E}}[M_{i}^{2}-2M_{i}M_{i-1}+M_{i-1}^{2}]\\&=\sum _{i=1}^{n}{\text{E}}\left[M_{i}^{2}-2(M_{i-1}+M_{i}-M_{i-1})M_{i-1}+M_{i-1}^{2}\right]\\&=\sum _{i=1}^{n}{\text{E}}\left[M_{i}^{2}-M_{i-1}^{2}\right]-2{\text{E}}\left[M_{i-1}(M_{i}-M_{i-1})\right]\\&={\text{E}}[M_{n}^{2}]-{\text{E}}[M_{0}^{2}]={\text{E}}[M_{n}^{2}].\end{aligned}}}
Applying this result to the martingale
(
S
i
)
i
=
0
n
{\displaystyle (S_{i})_{i=0}^{n}}
, we have
Pr
(
max
1
≤
i
≤
n
|
S
i
|
≥
λ
)
=
Pr
[
|
Z
n
|
≥
λ
]
≤
1
λ
2
E
[
Z
n
2
]
=
1
λ
2
∑
i
=
1
n
E
[
(
Z
i
−
Z
i
−
1
)
2
]
≤
1
λ
2
∑
i
=
1
n
E
[
(
S
i
−
S
i
−
1
)
2
]
=
1
λ
2
E
[
S
n
2
]
=
1
λ
2
Var
[
S
n
]
{\displaystyle {\begin{aligned}{\text{Pr}}\left(\max _{1\leq i\leq n}|S_{i}|\geq \lambda \right)&={\text{Pr}}[|Z_{n}|\geq \lambda ]\\&\leq {\frac {1}{\lambda ^{2}}}{\text{E}}[Z_{n}^{2}]={\frac {1}{\lambda ^{2}}}\sum _{i=1}^{n}{\text{E}}[(Z_{i}-Z_{i-1})^{2}]\\&\leq {\frac {1}{\lambda ^{2}}}\sum _{i=1}^{n}{\text{E}}[(S_{i}-S_{i-1})^{2}]={\frac {1}{\lambda ^{2}}}{\text{E}}[S_{n}^{2}]={\frac {1}{\lambda ^{2}}}{\text{Var}}[S_{n}]\end{aligned}}}
where the first inequality follows by Chebyshev's inequality .
This inequality was generalized by Hájek and Rényi in 1955.
Billingsley, Patrick (1995). Probability and Measure . New York: John Wiley & Sons, Inc. ISBN 0-471-00710-2 . (Theorem 22.4)
Feller, William (1968) [1950]. An Introduction to Probability Theory and its Applications, Vol 1 (Third ed.). New York: John Wiley & Sons, Inc. xviii+509. ISBN 0-471-25708-7 .
Kahane, Jean-Pierre (1985) [1968]. Some random series of functions (Second ed.). Cambridge: Cambridge University Press. p. 29-30.
This article incorporates material from Kolmogorov's inequality on PlanetMath , which is licensed under the Creative Commons Attribution/Share-Alike License .